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Introduction

Definition 0.0.1 A binary operation on a set S is a function S × S −→ S.

The image of (a, b) ∈ S × S is often written as a ◦ b, a · b or ab (and called
multiplication) or as a+ b (and called addition).

Definition 0.0.2 A group (G, ◦) is a nonempty set G together with a binary
operation ◦ on G such that

1. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G (associativity),

2. there exists e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G (identity),and

3. for each a ∈ G there exists a′ ∈ G such that a ◦ a′ = a′ ◦ a = e (inverse).

The element e is called an identity. The identity is usually written as 1
if the operation is multiplication and as 0 if the operation is addition. The
element a′ is called the inverse of a is written as a−1 (multiplication) or as −a
(addition).

Definition 0.0.3 A group (G, ◦) is called commutative or abelian if a ◦ b =
b ◦ a for all a, b ∈ G.

Definition 0.0.4 A ring (R,+, ◦) is a nonempty set R together with two binary
operations + and ◦ on R such that

1. (R,+) is a commutative group,

2. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ R (associativity),

3. a ◦ (b+ c) = a ◦ b+ a ◦ c and (a+ b) ◦ c = a ◦ c+ b ◦ c for all a, b, c ∈ R
(distributive properties).

Definition 0.0.5 A ring (R,+, ◦) is commutative if a ◦ b = b ◦ a for all a,
b ∈ R.

Definition 0.0.6 A ring (R,+, ◦) is a ring with identity if there exists an
element e ∈ R such that a ◦ e = e ◦ a = a for all a ∈ R.
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viii INTRODUCTION

Definition 0.0.7 A left (right) ideal I of a ring R is non-empty subset of R
that is itself a ring under the operations in R such that ra ∈ I (ar ∈ I) for all
r ∈ R and a ∈ i. An ideal is both a left and a right ideal.

Definition 0.0.8 If I is an ideal of a ring R, the quotient ring R modulo I
is the set of cosets R/I = {a+ I : a ∈ R} where addition and multiplication are
given by (a+ I) + (b+ I) = a+ b+ I and (a+ I) (b+ I) = ab+ I.

Definition 0.0.9 A left R-module is a commutative group (M,+) together
with a function ◦ : R×M −→M such that

1. a ◦ (m+ n) = a ◦m+ a ◦ n for all a ∈ R and for all m, n ∈M ,

2. (a+ b) ◦m = a ◦m+ b ◦ n for all a, b ∈ R and for all m ∈M , and

3. (ab) ◦m = a ◦ (b ◦m) for all a, b ∈ R and for all m ∈M .

In what follows, all R-modules will be left R-modules.

Definition 0.0.10 An R-module M is unitary if R is a ring with identity 1
and 1 ◦m = m for all m ∈M .

In what follows, multiplication will be indicated by juxtaposition and + will
be used for both ring addition and addition in the group (M,+).

Definition 0.0.11 A submodule N of an R-module M is a subset of M which
is itself an R-module with respect to addition and scalar multiplication in M .

Definition 0.0.12 A collection Ω of submodules of an R-module M is a chain
if for any pair S and T in Ω, elther S ⊆ T or T ⊆ S.

Definition 0.0.13 If M and N are R-modules, then a function f : M −→ N
is an R-module homomorphism if f (m+ n) = f (m) + f (n) and f (am) =
af (m) for all m, n ∈M and a ∈ R.

Definition 0.0.14 Given an R-module homomorphism f : M −→ N , the
kernel of f is ker (f) = {m ∈M : f (m) = 0} and image of f is Im (f) =
{f (m) : m ∈M}.

Definition 0.0.15 A sequence M
f−→ N

g−→ P of R-module homomorphisms
is called exact at N if Im (f) = ker (g).

Definition 0.0.16 A sequence 0 −→M
f−→ N

g−→ P −→ 0 of of R-module ho-
momorphisms is called a short exact sequence of R-module homomorphisms
if it is exact at each point in the sequence. (The homomorphisms on the extreme
left and right are the maps that take everything to 0.)

Definition 0.0.17 An R-module M is simple if M is non-zero and has no
proper non-zero submodules.



Chapter 1

Some Classical Theorems

1.1 Chain Conditions

Rings will be rings with identity, and modules will be unitary left modules unless
otherwise stated.

Definition 1.1.1 An R-module M satisfies the ascending chain condition
if every ascending chain of submodules of M has only finitely many terms. The
module M satisfies the maximum condition if every non-empty set of sub-
modules of M has a maximal element.

Theorem 1.1.2 Let R be a ring. The following are equivalent.

1. M satisfies the ascending chain condition.

2. M satisfies the maximum condition.

3. Every submodule of M is finitely generated.

Definition 1.1.3 An R-module M is Noetherian if M satisfies the ascending
chain condition. The ring R is left Noetherian if it is Noetherian as a left
module over itself.

Definition 1.1.4 An R-module M satisfies the descending chain condition
if every descending chain of submodules of M has only finitely many terms.
The module M satisfies the minimum condition if every non-empty set of
submodules of M has a minimal element.

Theorem 1.1.5 An R-module M satisfies the descending chain condition if
and only if M satisfies the minimum condition.

Definition 1.1.6 An R-module M is Artinian if it satisfies the descending
chain condition. The ring R is left Artinian if R is Artinian as a left module
over itself.

1



2 CHAPTER 1. SOME CLASSICAL THEOREMS

Theorem 1.1.7 Let 0→ A→ B → C → 0 be an exact sequence of R-modules.
Then B is Noetherian (Artinian) if and only if A and C are Noetherian (Ar-
tinian).

Corollary 1.1.8 A ring is left Noetherian (Artinian) if and only if every fi-
nitely generated left R-module is Noetherian (Artinian).

Definition 1.1.9 A finite descending chain

M = M0 ⊃M1 ⊃ ... ⊃Mr = 0

of submodules of M is a Jordan-Hölder series if all the factors Mi/Mi+1 are
simple modules. Two such series are equivalent if there is a one-to-one corre-
spondence between the factors such that corresponding factors are isomorphic.

Theorem 1.1.10 (Jordan-Hölder) Any two Jordan-Hölder series of a module
are equivalent.

Theorem 1.1.11 An R-module satisfies both the ascending and the descending
chain conditions if and only if it has a Jordan-Hölder series.

1.2 The Radical of a Ring

Definition 1.2.1 An R-module is faithful if the annihilator 0 : M ={r ∈ R :
rM = 0 of M is 0. A ring R is left primitive if there exists a faithful simple
left R-module. An ideal I 6= R is left primitive if the ring R/I is left primitive.

Remark 1.2.2 A primitive ring R has a faithful simple module S, E = HomR(S, S)
is a division ring, and multiplication by elements of R are E-homomorphisms
of S and thus linear transformations on the vector space S. Thus R is a ring of
linear transformations on S, and S has no invariant subspaces with respect to
this ring R.

Theorem 1.2.3 Every maximal left ideal contains a left primitive ideal. Every
left primitive ideal is the intersection of all maximal left ideals containing it.

Corollary 1.2.4 The intersection of all maximal left ideals of a ring is the
intersection of all left primitive ideals of that ring and is a two-sided ideal.

Theorem 1.2.5 Let I be a left ideal of R. The following are equivalent.

1. 1 + a has a left inverse for all a ∈ I.

2. I is contained in every maximal left ideal.

Lemma 1.2.6 If I is a left ideal and 1+a has a left inverse for all a in I, then
1 + a has a right inverse for all a in I.
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Theorem 1.2.7 The intersection of all left ideals, the intersection of all right
ideals, and intersection of all left primitive ideals, and the intersection of all
right primitive ideals are the same.

Definition 1.2.8 The intersection of all maximal left ideals of a ring R is the
Jacobson radical of R, denoted rad(R) or J(R).

Theorem 1.2.9 The Jacobson radical satisfies rad(R) = {a ∈ R : 1 + ra has a
left inverse for all r ∈ R} = {a ∈ R : 1 + ra has a right inverse for all r ∈ R}.

Definition 1.2.10 An element r in R is nilpotent if rn = 0 for some positive
integer n. A left (or right) ideal I is nil if every element of it is nilpotent. A
left (or right) ideal is nilpotent if In = 0 for some positive integer n.

Theorem 1.2.11 The Jacobson radical rad(R) contains all nil left and all nil
right ideals.

Lemma 1.2.12 (Nakayama) The following are equivalent for the left ideal I of
a ring R.

1. I ⊂ rad(R).

2. If M is a finitely generated left R-module and IM = 0, then M = 0.

Corollary 1.2.13 If R is left Artinian, then rad(R) is nilpotent.

Lemma 1.2.14 Let R be a ring. The following hold.

1. The sum of a finite number of nilpotent left ideals of R is nilpotent.

2. The sum of any set of nil ideals of R is nil.

3. The sum of all the nilpotent ideals of R is nil and contains all nilpotent
one-sided ideals.

Corollary 1.2.15 If R is left Artinian, then rad(R), the sum of all nil left
ideals, the sum of all nil right ideals, the sum of all nilpotent left ideals, and the
sum of all nilpotent right ideals are the same.

Corollary 1.2.16 If R is left Noetherian, then R has a maximum nilpotent left
ideal and a maximum nilpotent ideal.

Lemma 1.2.17 A ring R contains no non-zero nil left ideals if and only if R
contains no non-zero nil right ideals.

Definition 1.2.18 A left ideal I is an annihilator left ideal if it is the left
annihilator of a subset of R.

Lemma 1.2.19 Let R satisfy the maximum condition on annihilator left ideals.
If R has a non-zero nil right or left ideal, then R has a non-zero nilpotent ideal.

Theorem 1.2.20 (Levitzki) If R is left Noetherian, then every nil left or nil
right ideal is nilpotent.
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1.3 Semi-simple Rings

Definition 1.3.1 An R-module is semi-simple if it is the direct sum of simple
R-modules. The ring R is left semi-simple if R is semi-simple as a left module
over itself.

Theorem 1.3.2 The module M is semi-simple if and only if every submodule
of M is a direst summand of M.

Theorem 1.3.3 If 0 → L → M → N → 0 is exact with M semi-simple, then
L and N are semi-simple.

Theorem 1.3.4 Every left R-module is semi-simple if and only if R is left
semi-simple.

Lemma 1.3.5 A left ideal I of R is a summand of the left R-module R if and
only if I = Re for some idempotent e of R.

Lemma 1.3.6 A minimal left ideal I of R is a summand of R if and only if
I2 6= 0.

Theorem 1.3.7 The following are equivalent.

1. R is left semi-simple.

2. R is left Artinian with rad(R) = 0.

3. R is left Artinian, and for I a minimal left ideal, I2 6= 0.

Theorem 1.3.8 (Levitzi) If R is left Artinian, then R is left Noetherian.

Theorem 1.3.9 A left Artinian ring R is simple if and only if there is a simple
faithful R-module. If R is simple and left Artinian, then all simple left rM −
mocules are isomorphic.

Corollary 1.3.10 If R is left Artinian, then a two-sided ideal I is left primitive
if and only if it is maximal.

Corollary 1.3.11 If R is left Artinian, then rad(R) is the intersection of all
maximal two-sided ideals.

Theorem 1.3.12 If R is left semi-simple, then there are only a finite number of
isomorphic classes of simple left R-modules. The correspondence M ←→ 0 : M
is bijective between isomorphism simple R-modules and maximal two-sided ideals
of R.

Theorem 1.3.13 A left semi-simple ring R is the direct sum of its minimal
two-sided ideals.

Corollary 1.3.14 A left semi-simple ring R is uniquely the direct sum of simple
left Artinian rings.

Corollary 1.3.15 Let M1,M2, ...,Mn be the maximal two-sided ideals in a left
semi-simple ring R. Then

R ∼= R/M1 ⊕R/M2 ⊕ ...⊕R/Mn
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1.4 The Jacobson Density Theorem

Theorem 1.4.1 (The Jacobson Density Theorem) Let R be a left primitive
ring, S a simple faithful left R-module, and E = HomR(S, S). Then S is a vector
space over the division ring E, and if {s1, s2, ..., sn} is linearly independent in
S and {x1, x2, ..., xn} ⊂ S, then there is an element r in R such that rsi = xi
for all i.

Corollary 1.4.2 If the dimension of S is n, then R is isomorphic to the ring
of n× n matrices En over the division ring E.

Corollary 1.4.3 If R is left primitive and left Artinian, then the dimension of
S is finite, and so R ∼= En.

Corollary 1.4.4 (Wedderburn) If R is simple and left Artinian, then R ∼= En.

Theorem 1.4.5 Let D be a division ring, and let V be a left vector space over
D of finite dimension. Then the ring E = HomD(V, V ) = Dn is a simple ring
which is left and right Artinian. The length of any Jordan-Hölder series for E
as a left E-module is the same as the length of any such series for E as a right
E-module, and is the dimension of V.

Corollary 1.4.6 A simple ring is left Artinian if and only if it is right Artinian.

Theorem 1.4.7 If D and E are division rings, m and n are positive integers,
and Dm ∼= En, then D ∼= E and m = n.

Theorem 1.4.8 A necessary and suffi cient condition that a ring be semi-simple
is that it be the direct sum of rings each of which is isomorphic to Dn for various
division rings D and various positive integers n. Such a representation is unique.
A ring is left semi-simple if it is right semi-simple.

1.5 Exercises

1. Find an example of a ring that is left primitive but not right primitive.
(G. Bergman, Proc. Amer. Math. Soc. 15(1964), 473,475.)

2. Prove that every left primitive ideal is contained in a right primitive ideal.

3. Prove that if R is left Noetherian and satisfies the descending chain con-
dition on principal left (right) ideals, then R is left Artinian.

4. Find the radical of Rn in terms of the radical of t.

5. Find the radical of Z/Zm.

6. Prove that the radical of a ring contains no non-zero idempotents.

7. Let e be an idempotent in R. Prove that rad(eRe) = e(rad(R))e.
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8. Let I be a two sided ideal contained in rad(R). show that rad(R/I) =
rad(R)/I. In particular, rad(R/rad(R))) = 0.

9. Prove that rad(R) = 0 if and only if there exists a faithful semi-simple
left R-module.

10. Prove that if rad(R) = 0 and R has the descending chain condition on
principle left ideals, then R is semi-simple.

11. Prove that R is left primitive if and only if R has a maximal left ideal
which contains no non-zero two sided ideals.

12. Let e be idempotent in R. Prove that HomR(Re,Re) is isomorphic to eRe.

13. Let e1 and e2 be idempotents in r. Prove that the left modules Re1 and
Re2 are isomorphic if and only if the right modules e1R and e2R are
isomorphic.

14. Let I be a minimal left ideal of R, and let S be the left ideal generated
by all minimal left ideals isomorphic to I. Prove that S is two sided, and
is a direct sum of left ideals isomorphic to I.

15. Prove that a simple ring with a minimal left ideal is left semi-simple.

16. Let D be a division ring, U an infinite dimensional vector space over
E, and R = HomD(U,U). Show that R has a maximal left ideal which
contains no maximal two-sided ideal. Show that a primitive ring is not
necessarily simple. Show that a left primitive ideal is not necessarily two
sided.

17. Show that if R1, R2, ..., Rn are left Artinian (Noetherian), then so is the
ring direct sum R1⊕R2⊕ ...⊕Rn.What is the radical of this direct sum?

18. Prove that (R/I)n ∼= Rn/In if I is any ideal of R.

19. Find all simple commutative rings.

20. Show that the radical of a commutative Artinian ring is the set of all
nilpotent elements.

21. Let R be a commutative ring, and let N be the largest nil ideal of R. Find
the largest nil ideal of R[x].

22. Find the center of Rn.

23. Show that Rn[x] ∼= (R[x])n.

24. Prove that if R has no non-zero nilpotent elements, then any idempotent
in R is in the center of R.

25. Prove that the left socle equals the right socle if R has no non-zero nilpo-
tent ideals.
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26. Prove that if R is isomorphic to a dense ring of linear transformations over
a left vector space, then R is left primitive.

27. Let R be left Artinian, J its radical, andM a left R-module. Prove that if
JM = 0, thenM is semi-simple andHomR(X,M) ∼= HomR/J(X/JX,M).

28. Prove that if R is left Artinian, then there are only finitely many isomor-
phism classes of simple left R-modules.

29. A ring is semi-primary if R/rad(R) is semi-simple and rad(R) is nilpo-
tent. Prove that if a semi-primary ring is left Noetherian, then it is left
Artinian.

30. Let V be a vector space over D, V 6= 0. =, and let E = HomD((V, V ). Let
c be the smallest infinite cardinal bigger than dim(V ). Prove that there
exists a one-to-one correspondence between the non-zero ideals of E and
the set of infinite cardinals ≤ c.

31. Let E = HomD((V, V ), D a division ring. Prove that there exists a
one-to-one correspondence between ultra-filters of subspaces of V and the
maximal left ideals of E. Find all maximal right ideals of E.

32. Show that the ring of all 2× 2 matrices (aij) with a11 an integer, a12 and
a22 rationals, and a21 = 0 is right Noetherian but not left Noetherian.

33. Show that the ring of all 2 × 2 matrices (aij) with a11 rational, a12 and
a22 reals, and a21 = 0 is right Artinian but not left Artinian.
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Chapter 2

Projective and Injective
Modules

2.1 Projective Modules

Definition 2.1.1 A module P is projective if every diagram

P
↓

B −→ C −→ 0

with exact row can be embedded in a commutative diagram

P
↙ ↓

B −→ C −→ 0

Theorem 2.1.2 Free modules are projective.

Theorem 2.1.3 A direct sum
⊕
i∈I

Pi is projective if and only if each Pi is pro-

jective.

Theorem 2.1.4 The following are equivalent.

1. P is projective.

2. P is a summand of a free module.

3. Every exact sequence 0 −→M −→ N −→ P −→ 0 splits.

4. If the sequence B −→ C −→ 0 is exact, the so is the sequence Hom(P,B) −→
Hom(P,C) −→ 0.

9
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Theorem 2.1.5 (The dual basis lemma) P is projective if and only if there
exist families {xi}i∈I and {fi}i∈I with xi ∈ P and fi ∈ Hom(P,R) such that
for x ∈ P , fi(x) = 0 almost always and x =

∑
i∈I fi(x)xi.

Corollary 2.1.6 P is finitely generated and projective if and only if there exist
such families {xi}i∈I and {fi}i∈I with I finite.

2.2 Injective Modules

Definition 2.2.1 A module is injective if every diagram

0 −→ A −→ B
↓
Q

with exact row can be embedded in a commutative diagram

0 −→ A −→ B
↓ ↙
Q

Theorem 2.2.2 A direct product
∏
i∈I
Qi is injective if and only if every Qi is

injective.

Theorem 2.2.3 The left R-module Q is injective if and only if for each left
ideal I of R, the diagram

0 −→ I −→ R
↓
Q

can be embedded in a commutative diagram

0 −→ I −→ R
↓ ↙
Q

Corollary 2.2.4 Let R be a left principal ideal ring with no zero divisors. A
left R-module Q is injective if and only if rQ = Q for every non-zero r ∈ R.

Corollary 2.2.5 An Abelian group is injective if and only if it is divisible.

Theorem 2.2.6 Every module is contained in an injective module.

Theorem 2.2.7 The following are equivalent.

1. Q is injective.
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2. Every exact sequence 0 −→ Q −→ N splits.

3. If the sequence 0 −→ A −→ B is exact, then so is the sequenceHom(B,Q) −→
Hom(A,Q) −→ 0.

Definition 2.2.8 A submodule N of M is an essential submodule and M is
an essential extension of N, if for every submodule S of M, S ∩N = 0 only
if S = 0.

Definition 2.2.9 The module Q is an injective envelope of M is M is a
submodule of Q, Q is injective, and no proper submodule of Q containing M is
injective.

Theorem 2.2.10 If M is a submodule of the injective module Q, then any
essential extension of M in Q is an injective envelope of M.

Corollary 2.2.11 The module Q is an injective envelope of M if and only if
Q is injective and M is essential in Q.

Theorem 2.2.12 Every module has an injective envelope. If Q1 and Q2 are
injective envelopes of M, then there is an isomorphism Q1 −→ Q2 fixing M
elementwise.

Theorem 2.2.13 The module P is projective if and only if every diagram

P
↓

Q1 −→ Q2 −→ 0

with exact row and with Q1 injective can be embedded in a commutative diagram

P
↙ ↓

Q1 −→ Q2 −→ 0

Theorem 2.2.14 The module Q is injective if and only if every diagram

0 −→ P1 −→ P2
↓
Q

with exact row and with P projective can be embedded in a commutative diagram

0 −→ P1 −→ P2
↓ ↙
Q
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2.3 Hereditary Rings

Definition 2.3.1 The ring R is left hereditary if every left ideal of R is
projective.

Theorem 2.3.2 If R is left hereditary, then every submodule of a free left R-
module is a direct sum of modules each of which is isomorphic to a left ideal of
R.

Theorem 2.3.3 The following are equivalent.

1. R is left hereditary.

2. Each submodule of a projective left R-module is projective.

3. Each homomorphic image of an injective left R-module is injective.



Chapter 3

Direct Sum Decompositions

3.1 Azumaya Theorems

Definition 3.1.1 A ring R is local if the non-units of R form an ideal. (Thus
a local ring has a unique maximal left, right, and two-sided ideal.)

Theorem 3.1.2 (Azumaya) Suppose that

M =
⊕
i∈I

Mi =
⊕
i∈J

Nj

with Hom(Nj , Nj) local, with each Mi indecomposable, and with no Mi or Ni
zero. Then there is a one-to-one correspondence f : I → J such thatMi

∼= Nf(i).

Theorem 3.1.3 (Crawley-Jonsson-Warfield) Suppose that

M =
⊕
i∈I

Mi

with each Mi countably generated with local endomorphism ring, then any sum-
mand of M is a direct sum of such modules. In particular, any two direct sum
decompositions of M refine to equivalent ones.

Theorem 3.1.4 Let S be a summand of

⊕ni=1Mi

with each HomR(Mi,Mi) local. Then S is a direct sum of a finite number of
modules each isomorphic to some Mi.

Theorem 3.1.5 Let
⊕ni=1Mi = ⊕i∈JSj

with each HomR(Mi,Mi) local. Then the decomposition ⊕i∈JSj refines to one
equivalent to ⊕ni=1Mi.

***Some more Azumaya theorems here, countable, finite decompositions,
etc.***

13
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3.2 Some Direct Sum Decompositions for Pro-
jective Modules

Theorem 3.2.1 (Kaplansky) Any direct summand of a direct sum of countably
generated modules is a direct sum of countably generated modules.

Theorem 3.2.2 (C. Walker) Let m be an infinite cardinal. Any direct sum-
mand of a direct sum of modules each generated by a subset of cardinality ≤ m
is a direct sum of modules each generated by a subset of cardinal ≤ m.

Theorem 3.2.3 (C. Walker) Let m be an infinite cardinal. Any direct sum-
mand of a direct sum of modules of cardinality ≤ m is a direct sum of modules
of cardinality ≤ m.

Theorem 3.2.4 (Kaplansky) Projective modules are direct sums of countably
generated modules.

Lemma 3.2.5 (Kaplansky) Let M be a countably generated module. Assume
that any summand N of M has the property that any element of N can be
embedded in a free (respectively, finitely generated) direct summand of N. Then
M is free (respectively, a direct sum of finitely generated modules).

Lemma 3.2.6 (Kaplansky) Let P be a projective module over a local ring. Then
any element of P can be embedded in a free summand of P.

Theorem 3.2.7 (Kaplansky) Any projective module over a local ring is free.

Definition 3.2.8 A ring R is left semi-hereditary if every finitely generated
left ideal of R is projective.

Lemma 3.2.9 If R is left semi-hereditary, then every finitely generated sub-
module of a free left R-module is a direct sum of modules each of which is
isomorphic to finitely generated left ideal of R. In particular, finitely generated
submodules of projectives are projective.

Lemma 3.2.10 Let P be projective over a commutative semi-hereditary ring
R. Then any element of P can be embedded in a finitely generated summand of
P.

Theorem 3.2.11 (Kaplansky) Let R be a commutative semi-hereditary ring.
Then any projective R-module is a direct sum of modules each of which is iso-
morphic to a finitely generated ideal of R.

Corollary 3.2.12 If R is a commutative integral domain such that every fi-
nitely generated ideal is principal, then every projective R-module is free.

Definition 3.2.13 A ring R is regular if for each r ∈ R, there is an s ∈ R
such that rsr = r.
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Lemma 3.2.14 Finitely generated left ideals of regular rings are summands.

Theorem 3.2.15 A ring R is regular if and only if every finitely generated
submodule of a projective left R-module is a summand.

Corollary 3.2.16 If R is regular, then finitely generated projective modules are
isomorphic to direct sums of left ideals of R.

Corollary 3.2.17 If R is regular, then so is Rn.

3.3 Some Direct Sum Decompositions for Injec-
tive Modules

Theorem 3.3.1 A ring R is left Noetherian if and only if the direct sum of
injective left R-modules is injective.

Lemma 3.3.2 Let Q be injective. The following are equivalent.

1. Q is the injective envelope of every one of its non-zero submodules.

2. Q contains no non-zero submodules S and T such that S ∩ T = 0.

3. Q is indecomposable.

Definition 3.3.3 Let I be a left ideal of R, and suppose that

I = I1 ∩ I2 ∩ · · · ∩ In

with the Ij left ideals. This is an irredundant decomposition of I if no Ij
contains the intersection of the rest.

Theorem 3.3.4 Let I = I1 ∩ I2 ∩ ... ∩ In be an irredundant decomposition of
the left ideal I. Suppose that the injective envelope E(R/Ij) is indecomposable.
Then the natural embedding of R/I into ⊕jE(R/Ij) can be extended to E(R/I),
and this extension is an isomorphism.

Definition 3.3.5 A left ideal I of R is irreducible if I = K ∩ L implies that
I = K or I = L.

Theorem 3.3.6 The module Q is an indecomposable injective module if and
only if Q = E(R/I) with I irreducible. In this case, for x in Q, x 6= 0, 0 : x is
irreducible and Q = E(R/(0 : x)).

Lemma 3.3.7 If I is a left ideal in the left Noetherian ring R, then I is the
intersection of finitely many irreducible left ideals.

Lemma 3.3.8 The endomorphism ring of an indecomposable injective module
is local.
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Theorem 3.3.9 Let R be left Noetherian. Then any injective left R-module is
a direct sum of indecomposable injective modules. Any two such decompositions
are equivalent.

Theorem 3.3.10 Let S be a summand of ⊕ni=1Qi with the endomorphism of
each Qi being local. Then S is a direct sum of a finite number of modules each
isomorphic to some Qi.

Corollary 3.3.11 Let ⊕i∈ISi = ⊕j∈JQj with the endomorphism ring of each
Qj local Then the decomposition ⊕i∈ISi refines to one equivalent to ⊕j∈JQj .

Theorem 3.3.12 (Faith and E. Walker) Let Q = ⊕i∈IQi with Qi countable
generated, indecomposable and injective. Then any summand of Q is a direct
sum of countable generated indecomposable modules.

Theorem 3.3.13 If each Qi is indecomposable and injective, then any sum-
mand of ⊕∞i=1Qi is a direct sum of modules each of which isomorphic to some
Qi.

Corollary 3.3.14 Let
∞⊕
i=1

Si =

∞⊕
j=1

Qj

with each Qj indecomposable and injective. Then the decomposition on the left
can be refined to one equivalent to the one on the right.

Theorem 3.3.15 (Faith and E. Walker) A ring R is left Noetherian if and
only if there exists a cardinal c such that each injective left R-module is a direct
sum of modules each generated by c elements.

Corollary 3.3.16 (Papp) If each injective left R-module is a direct sum of
indecomposable injective modules, then R is left Noetherian.

Theorem 3.3.17 A ring R is left Artinian if and only if every injective left
R-module is the direct sum of injective envelopes of simple modules.

3.4 Exercises

1. Let P be projective. Prove that there exists a free module F such that
P ⊕ F ∼= F.

2. If P → M → 0 is exact, show it is a projective cover of M if and only if
Ker(f) is co-essential.

3. Find the Abelian groups with projective covers.

4. Prove that HomR(M,M) local implies that M is indecomposable.
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5. Prove that Q is an injective envelope ofM if and only ifM is a submodule
of Q, and whenever M is a submodule of Qi with Qi injective, then thee
exists a monomorphism Q→ Qi fixing M elementwise.

6. If R is left Noetherian and M is a left R-module, prove that M contains
a maximal injective submodule.

7. If R is left Noetherian and left hereditary, andM is a left R-module, prove
that M contains a unique maximal injective submodule which contains
every injective submodule of M.

8. Prove that if A is essential in B and C is essential in D, then A ⊕ C is
essential in B ⊕D.

9. If A is essential in B, and B is essential in C, prove that A is essential in
C.

10. If A is essential in c, and B is essential in C, prove that A∩B is essential
in C.

11. If A is a submodule of M, prove that M has a submodule B such that
A ∩B is essential in M.

12. Find an example of a module M with submodules S and N such that
S ⊂ N, N is essential in M, but N/S is not essential in M/S.

13. Find an example of a module M with submodules A,B, and C such that
A is essential in B, but such that A+ C is not essential in B + C.

14. Let P = {
∑∞

i=0 aip
i : ai ∈ Z} for some prime p, and with

∑∞
i=0 aip

i =∑∞
i=0 bip

i if pk+1 divides
∑k

i=0(ai − bi)pi for all k. Add and multiply by
the rules

∞∑
i=0

aip
i +

∞∑
i=0

bip
i =

∞∑
i=0

(ai + bi)p
i

( ∞∑
i=0

aip
i

)( ∞∑
i=0

bip
i

)
=

∞∑
i=0

(

i∑
j=0

ai−jbj)p
i

Prove that P is a commutative integral domain. Prove that P is local
with maximum ideal pP. Prove that P ∼= HomZ(Z(p∞), Z(p∞)).
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Chapter 4

Rings of Quotients

4.1 The Classical Left Quotient Ring

Definition 4.1.1 An element of a ring R is regular if it is neither a left nor
a right zero divisor.

Definition 4.1.2 A ring Q containing R is a left quotient ring of R if

1. every regular element in R has a two sided inverse in Q, and

2. every element in Q is of the form a−1b, where a and b are in r, and a is
regular in R.

Definition 4.1.3 (Ore’s condition)

Theorem 4.1.4 (Ore, 1933) The ring R has a left quotient ring if and only if
for a and b in R with b regular, there exist a1 and b1 in R with b1 regular, such
that b1a = a1b. (This condition is Ore’s condition.) (Use usual proof)

4.2 Goldie Rings

Definition 4.2.1 Let S be a subset of R. The left annihilator of S is the set
l(S) = {x ∈ R : xS = 0}. The right annihilator of S is r(S) = {x ∈ R : Sr =
0}. A left (right) ideal is a left (right) annihilator if it equals l(S) (r(S)) for
some subset S of R.

Definition 4.2.2 The ring R satisfies the left Goldie chain conditions, or
R is a left Goldie ring if

1. R satisfies the ascending chain condition on left annihilators, and

2. R contains no infinite direct sum of left ideals.

19
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Theorem 4.2.3 Let R be a left Goldie ring without zero divisors. Then R has
a left quotient ring Q, and Q is a division ring.

Definition 4.2.4 The ring R is a left Ore domain if it has no zero divisors,
and the intersection of any two non-zero left ideals of R is non-zero. (Ore
domains are precisely those rings with a left ring of quotients which is a division
ring.)

Definition 4.2.5 A ring is prime if IJ = 0 implies that I = 0 or J = 0 for
ideals I and J. A ring is semi-prime if it has no non-zero nilpotent ideals.

Remark 4.2.6 A ring R is semi-prime if and only if R has no non-zero nilpo-
tent left ideals if and only if R has no non-zero nilpotent right ideals.

Lemma 4.2.7 Let R be semi-prime with the ascending chain condition on left
annihilators. If I and J are left ideals with J ⊂ I and r(I) 6= r(J), then there
is an x in I such that Ix 6= 0 and Ix ∩ J = 0.

Theorem 4.2.8 If R is semi-prime and has the ascending chain condition on
left annihilators, then Rx and Ry essential imply Rxy essential.

Theorem 4.2.9 If R is semi-prime with the ascending chain condition on left
annihilators, then Rx essential implies that x is regular.

Lemma 4.2.10 Let R be a semi-prime left Goldie ring. If x is in R and l(x) =
0, then Rx is essential and x is regular.

Definition 4.2.11 An ideal I is an annihilator ideal if I is the left annihi-
lator of some left ideal.

Lemma 4.2.12 A non-zero minimal annihilator ideal of a semi-prime left Goldie
ring R is a prime left Goldie ring (not necessarily with 1). Moreover, there is a
finite direct sum of such ideals which is an essential left ideal of R.

Lemma 4.2.13 Let R be a semi-prime left Goldie ring. Then every essential
left ideal of R contains a regular element.

Theorem 4.2.14 (Goldie) If R is a semi-prime left Goldie ring, then R has a
left quotient ring.

Lemma 4.2.15 If Q is a left quotient ring of R, and a1, a2, ..., an are regular
elements of R, then there exist a, b1, b2, ..., bn in R with a regular, such that
a−1i = ab−1i for all i.

Lemma 4.2.16 If Q is a left quotient right of R, and {Xi}i∈I is an independent
family of left ideals of R, then {QXi}i∈I is an independent family of left ideals
of Q.
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Theorem 4.2.17 (Goldie) If R is a semi-prime left Goldie ring, its left ring
of quotients is a semi-prime left Artinian ring.

Theorem 4.2.18 (Goldie) If R is a prime left Goldie ring, then R has a left
ring of quotients Q(R) which is a simple ring with the descending chain condition
on left ideals. That is, Q(R) = Dn for some division ring D.

Definition 4.2.19 Let R be a subring of S. Then R is a left order in S if S
is a ring of left quotients for R.

Theorem 4.2.20 (Goldie) Let R be a left order in S, where S is semi-simple
Artinian. Then R is a semi-prime left Goldie ring. If S is simple then R is
prime.

4.3 Noetherian Rings Satisfying The Regularity
Conditions

Definition 4.3.1 Let R be left Noetherian, N its ***maximum left nilpotent
ideal***. The ring R satisfies the regularity conditions if an element a is
regular in R if and only if a+N is regular in R/N.

Lemma 4.3.2 Let R be left Noetherian and satisfy the regularity conditions. If
an element a in R is regular, then for any x in rad(R) ∩N, Ra : x contains a
regular element.

Lemma 4.3.3 Let T0 = rad(N), R0 = R, Rk+1 = Rk/Tk, where Tk = rad(Nk)∩
Nk with Nk the maximum nilpotent ideal of Rk for k ≥ 0. For x in R, let x0 = x
and xk+1 = xk + Rk. Then if R satisfies the regularity conditions, and if a is
regular in r, then ak is regular in Rk.

Lemma 4.3.4 If R satisfies the regularity conditions, and if an element a is
regular, then for any e in R with ak in Tk, there exist f and f in R with g
regular, such that fa = ge.

Lemma 4.3.5 Ns = 0 implies that N(Ri)
s−1 = 0.

Corollary 4.3.6 Let R satisfy the regularity conditions, and suppose that the
element a is regular. For x in R, there exist c and d in R with d regular, such
that ca = dx.

Theorem 4.3.7 If R is left Noetherian an satisfies the regularity conditions,
then R has a left quotient ring.

Lemma 4.3.8 Let R satisfy the regularity conditions. Then

N(Q(R) = Q(R)(N(R)) = Q(R)(N(Q(R)) ∩R

where N(X) denotes the maximum nilpotent ideal of X. ***Q(R) = injective
hull??***
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Lemma 4.3.9 If R satisfies the regularity conditions, then Q(R)/N(Q(R)) ∼=
Q(R/N).

Theorem 4.3.10 If R is left Noetherian and satisfies the regularity conditions,
then R has a left quotient ring which is left Artinian.

Theorem 4.3.11 If R is left Noetherian and has a left quotient ring which is
left Artinian, then R satisfies the regularity conditions.

4.4 Serre Classes and Generalized Rings of Quo-
tients

Definition 4.4.1 A non-empty class S of left R-modules is a Serre class
if it is closed under submodules, homomorphic images and extensions. It is a
strongly complete Serre class if it is also closed under arbitrary direct sums.

Examples

1. R = Z and S = all p-groups

2. R = Z and S = all bounded groups

3. For any ring R, S = all finite modules

4. For any ring R, S = all modules of finite length

5. For R Noetherian, S = all finitely generated groups

Definition 4.4.2 If S is a Serre class, let F(S) = {I : I is a left ideal and
R/I ∈ S}.

Theorem 4.4.3 F(S) is a filter of left ideals. If S is strongly complete, then
so is F .

Definition 4.4.4 Let F be a filter of left ideals, and S(F) = {M : (0 : m) ∈ F
for each m ∈M}.

Theorem 4.4.5 If F is a filter of left ideals, then S(F) is closed under sub-
modules, homomorphic images and arbitrary direct sums, and so is a strongly
complete additive class. If F is a strongly complete filter, then S(F) is a strongly
complete Serre class.

Theorem 4.4.6 (Gabriel) If F is a strongly complete filter, then F = F(S(F)),
and if S is a strongly complete Serre class, then S = S(F(S)).
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4.5 Exercises

1. S is a Serre class if and only if for every exact sequence 0 → A → B →
C → 0, B ∈ S if and only if A and C are in S.

2. Let I be an ideal such that I2 = I, and let S be the class of left modules
M such that IM = 0. Then S is a Serre class.

3. Let R be the injective envelope of R. Prove that {I : Hom(R/I,R) = 0 is
a strongly complete filter.

4. Let A be the set of all regular elements of R with the property that if
a ∈ A, b ∈ R, there exist a1 ∈ A, b1 ∈ R such that a1b = b1a. Let
FA = {I : I is a left ideal, I contains an element of A}. Prove that FA is
a filter of left ideals. Is it strongly complete?
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Chapter 5

Self Injective Rings

5.1 Quasi-Frobenius Rings

Definition 5.1.1 A ring R is quasi-Frobenius if R is left and right Artinian
and lr(I) = I and rl(J) = j for left ideals I and right ideals J. (Note that one
need only assume the ascending chain condition on either right or left ideals.)

Examples. The following are QF (= quasi-Frobenius) rings, as will be seen
in the sequel.

1. Semi-simple rings

2. The group ring F (G) for any field and any finite group G

3. R(G) for R QF and G finite

4. The ring of n · n matrices over a QF ring

5. A proper homomorphic image of a principal ideal domain

6. F [T ], where V is a finite dimensional vector space over a field F, and T a
linear transformation on V

Remark 5.1.2 In 6 above, what subspaces of V are injective? Is V injective?
Can the fact that F [T ] is QF be used in studying linear transformations to any
new extent. See exercise 408 in Curtis and Reiner.

Remark 5.1.3 Is R Noetherian if and only if R has at most |R| left ideals? R
Noetherian implies R has at most |R| left ideals, clearly.

Theorem 5.1.4 The following are equivalent.

1. R is QF.

2. R is left Noetherian, r(I1 ∩ I2) = r(I1) + r(I2), and rl(J) = J for left
ideals Ii and right ideals J.

25
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3. R is left and right Noetherian and left self injective.

4. R is left and right Noetherian and left self injective.

5. R is right Artinian and left self injective.

6. R is left Noetherian and left self injective.

7. R is right Noetherian and left self injective.

8. R satisfies the ascending chain condition on left annihilator ideals and is
left self injective.

Remark 5.1.5 These are ring theoretical characterizations of QF rings. The
proofs are in the equal. Following are lemmas, etc. needed in the proof.

Lemma 5.1.6 The following hold.

1. If R is left self injective, then r(I1 ∩ I2) = r(I1) + r(I2) for left ideals Ii.

2. If R is left self injective, then rl(J) = J for finitely generated right ideals
J.

3. If r(I1 ∩ I2) = r(I1) + r(I2) and rl(J) = J for finitely generated right
ideals J, then every homomorphism from a finitely generated left ideal of
R into R can be extended to R.

***3. may not be quite correct***

Lemma 5.1.7 If R is right Artinian an J1 & J2 implies that l(J1) ' l(j2), for
right ideals Ji, then for any non-zero left R-module M, HomR(M,R) 6= 0.

Theorem 5.1.8 If the radical N of R is nil, and ui +N, i = 1, 2, ..., k is a set
of mutually orthogonal idempotents in R/N such that

∑
(ui +N) = 1 +N, then

there exists a set ei, i = 1, 2, ..., k of mutually orthogonal idempotents such that
1 =

∑
ei, and ei +N = ui +N. That is, idempotents can be lifted if the radical

is nil.

Lemma 5.1.9 If R is left self injective, then A(R) = {r ∈ R : l(r) is left essential} =
N, and R/N is (von Neumann) regular.

Theorem 5.1.10 The following categorical conditions are equivalent to the ring
theoretical conditions stated earlier, that is, are equivalent to being QF.

1. M ∈RM is projective if and only if it is injective.

2. M ∈RM injective implies M is projective.

3. M ∈RM projective implies M in injective.
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Lemma 5.1.11 (Faith) R satisfies the descending chain condition on left an-
nihilator ideals if and only if to each left ideal I there corresponds a finitely
generated left ideal I1 ⊆ I such that r(I1) = r(I).

Lemma 5.1.12 (Faith) If R is left self injective and satisfies the ascending
chain condition on left annihilator ideals, and if I ⊃ J, I and J left ideals, then
there exist finitely generated subideals I1 and J1 of I and J, respectively, such
that r(I1) = r(I), r(J1) = r(J), and I1 ⊃ J1.

Lemma 5.1.13 If every injective in RM is projective, then the injective enve-
lope of a finitely generated module in RM if finitely generated.

Lemma 5.1.14 (Chase) If R is semi-primary, then any M ∈RM satisfies the
descending chain condition on finitely generated submodules.

Lemma 5.1.15 Suppose that N is nilpotent. Let p be a finitely generated pro-
jective in RM, Λ = HomR(P, P ), Q = rad(Λ). then HomR(P/NP,P/NP )
≈ Λ/Q.

Lemma 5.1.16 If R is left Artinian, Re is indecomposable, e2 = e, then Re
has a unique maximal submodule, namely Ne, where N = rad(R). Furthermore,
if Rf is indecomposable and f2 = f, then Re ≈ Rf if and only if Re /Ne ≈
Rf/Nf.

Lemma 5.1.17 A projective module P is a generator if every simple module is
an image of P.

Corollary 5.1.18 If R is Artinian and P is an indecomposable projective, then
P/NOP is simple.
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